加入收藏 | 设为首页 | 会员中心 | 我要投稿 大同站长网 (https://www.0352zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 教程 > 正文

HashMap达成原理和源码解析

发布时间:2021-11-12 17:29:34 所属栏目:教程 来源:互联网
导读:哈希表(hash table)也叫散列表,是一种非常重要的数据结构。许多缓存技术(比如memcached)的核心其实就是在内存中维护一张大的哈希表,本文会对Java集合框架中的对应实现HashMap的实现原理进行讲解,然后会对JDK8的HashMap源码进行分析。 一、什么是哈希

哈希表(hash table)也叫散列表,是一种非常重要的数据结构。许多缓存技术(比如memcached)的核心其实就是在内存中维护一张大的哈希表,本文会对Java集合框架中的对应实现HashMap的实现原理进行讲解,然后会对JDK8的HashMap源码进行分析。
 
一、什么是哈希表
先了解下基本数据结构。
 
数组:采用一段连续的存储单元来存储数据。对于指定下标的查找,时间复杂度为O(1);通过给定值进行查找,需要遍历数组,逐一比对给定关键字和数组元素,时间复杂度为O(n),对于一般的插入删除操作,涉及到数组元素的移动,其平均复杂度也为O(n)。
线性链表:对于链表的新增,删除等操作(在找到指定操作位置后),仅需处理结点间的引用即可,时间复杂度为O(1),而查找操作需要遍历链表逐一进行比对,复杂度为O(n)。
二叉树:对一棵相对平衡的有序二叉树,对其进行插入,查找,删除等操作,平均复杂度均为O(logn)。
哈希表:相比上述几种数据结构,在哈希表中进行添加,删除,查找等操作,性能十分之高,不考虑哈希冲突的情况下,仅需一次定位即可完成,时间复杂度为O(1)。
我们知道,数据结构的物理存储结构只有两种:顺序存储结构和链式存储结构(像栈,队列,树,图等是从逻辑结构去抽象的,映射到内存中,也这两种物理组织形式),而在上面我们提到过,在数组中根据下标查找某个元素,一次定位就可以达到,哈希表利用了这种特性,哈希表的主干就是数组。存储位置 = f(关键字),f函数就是哈希函数,关键字就是key,这个函数的设计好坏会直接影响到哈希表的优劣。
 
 
 
 
 
   5.哈希冲突 : 然而万事无完美,如果两个不同的元素,通过哈希函数得出的实际存储地址相同怎么办?也就是说,当我们对某个元素进行哈希运算,得到一个存储地址,然后要进行插入的时候,发现已经被其他元素占用了,其实这就是所谓的哈希冲突,也叫哈希碰撞。哈希冲突的解决方案有多种:开放定址法(发生冲突,继续寻找下一块未被占用的存储地址),再散列函数法,链地址法,而HashMap即是采用了链地址法,也就是数组+链表的方式。
 
 
 
二、HashMap实现原理
  HashMap的主干是一个Node数组。Node是HashMap的基本组成单元,每一个Node包含一个key-value键值对。
 
/**
  * The table, initialized on first use, and resized as
  * necessary. When allocated, length is always a power of two.
  * (We also tolerate length zero in some operations to allow
  * bootstrapping mechanics that are currently not needed.)
  * 第一次使用的时候才进行初始化,如果有需要会重新调整大小,当重新分配内存的时候,数组长度总是2的次方
  */
  transient Node<K,V>[] table;
   Node是HashMap中的一个静态内部类。代码如下:
 
/**
 * Basic hash bin node, used for most entries.  (See below for
 * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
 */
// 与1.7中 Entry的内容大同小异,只是换了个名称而已!
static class Node<K,V> implements Map.Entry<K,V> {
    final int hash;  //对key的hashcode值进行hash运算后得到的值,存储在Node,避免重复计算
    final K key;
    V value;
    Node<K,V> next;  //存储指向下一个Node的引用
 
    Node(int hash, K key, V value, Node<K,V> next) {
        this.hash = hash;
        this.key = key;
        this.value = value;
        this.next = next;
    }
 
    public final K getKey()        { return key; }
    public final V getValue()      { return value; }
    public final String toString() { return key + "=" + value; }
 
    public final int hashCode() {
        return Objects.hashCode(key) ^ Objects.hashCode(value);
    }
 
    public final V setValue(V newValue) {
        V oldValue = value;
        value = newValue;
        return oldValue;
    }
 
    public final boolean equals(Object o) {
        if (o == this)
            return true;
        if (o instanceof Map.Entry) {
            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
            if (Objects.equals(key, e.getKey()) &&
                Objects.equals(value, e.getValue()))
                return true;
        }
        return false;
    }
}
  几个重要属性:
 
/**
  * The default initial capacity - MUST be a power of two.
  * 默认初始化容量大小16,容量大小必须是2的次方
  */
 static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
 
 /**
  * The maximum capacity, used if a higher value is implicitly specified
  * by either of the constructors with arguments.
  * MUST be a power of two <= 1<<30.
  * 最大的容量为 2^30
  */
 static final int MAXIMUM_CAPACITY = 1 << 30;
 
 /**
  * The load factor used when none specified in constructor.
  * 负载因子,一旦超过就会进行扩容
  */
 static final float DEFAULT_LOAD_FACTOR = 0.75f;
 /**
  * The number of times this HashMap has been structurally modified
  * Structural modifications are those that change the number of mappings in
  * the HashMap or otherwise modify its internal structure (e.g.,
  * rehash).  This field is used to make iterators on Collection-views of
  * the HashMap fail-fast.  (See ConcurrentModificationException).
  * 用于快速失败,由于HashMap非线程安全,在对HashMap进行迭代时,如果期间其他线程的参与导致HashMap的结构发生变化了
  *(比如put,remov*e等操作),需要抛出异常ConcurrentModificationException
  */
 transient int modCount;
 /**
  * The next size value at which to resize (capacity * load factor).
  *
  * @serial
  *阈值,当table == {}时,该值为初始容量(初始容量默认为16);当table被填充了,也就是为table分配内存空间后,
  *threshold一般为capacity*loadFactory。HashMap在进行扩容时需要参考threshold
  */
 int threshold;
/**
  * The bin count threshold for using a tree rather than list for a
  * bin.  Bins are converted to trees when adding an element to a
  * bin with at least this many nodes. The value must be greater
  * than 2 and should be at least 8 to mesh with assumptions in
  * tree removal about conversion back to plain bins upon
  * shrinkage.
  *当一个bucket是一个链表,链表个数大于等于8时,就要树状化,也就是要从链表结构变成红黑树结构
  */
 static final int TREEIFY_THRESHOLD = 8;
  HashMap构造函数:有4个构造器,其他构造器如果用户没有传入initialCapacity 和loadFactor这两个参数,会使用默认值initialCapacity默认为16,loadFactory默认为0.75
 
//指定初始容量,负载因子
public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                              initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                              loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
    }
//指定初始容量
public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }
//无参
public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }
//将已存在的map放进去进行初始化,若为空则抛null异常
public HashMap(Map<? extends K, ? extends V> m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    }
在常规构造器HashMap()中,没有为数组table分配内存空间,而是在执行put操作的时候才真正构建table数组。以下是put方法:
 
// 如果已经存在key对应的节点,则覆盖value值
public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}
// 重写,putVal的第三个参数onlyIfAbsent=true,如果已经存在key对应的节点,不覆盖value值
@Override
public V putIfAbsent(K key, V value) {
    return putVal(hash(key), key, value, true, true);
}
static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
 
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
              boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    if ((tab = table) == null || (n = tab.length) == 0) // 如果map为空时,调用resize()进行初始化!
        n = (tab = resize()).length;
    if ((p = tab[i = (n - 1) & hash]) == null) // 如果没有在数组中找到对应的节点,则直接插入一个Node (未发生碰撞)
        tab[i] = newNode(hash, key, value, null);
    else {    // 找到了(n - 1) & hash 对应下标的数组(tab)中的节点 ,也就是发生了碰撞
        Node<K,V> e; K k;
 
        // 1. hash值一样,key值一样,则找到目标Node
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
 
        // 2. 数组中找到的这个节点p是TreeNode类型,则需要插入到RBT里面一个节点
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        else {
 
        // 3. 不是TreeNode类型,则表示是一个链表,这里就类似与jdk1.7中的操作
            for (int binCount = 0; ; ++binCount) { // 遍历链表
                if ((e = p.next) == null) {
 
                    // 4. 此时查找当前链表的次数已经超过7个,则需要链表RBT化!
 
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    break;
                }
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k)))) // 5. 找到链表中对应的节点
                    break;
                p = e;
            }
        }
        // 如果e不为空,则表示在HashMap中找到了对应的节点
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            // 当onlyIfAbsent=false 或者key对应的旧value为空时,用新的value替换旧value
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    ++modCount; // 操作次数+1
    if (++size > threshold) // hashmap节点个数+1,并判断是否超过阈值,如果超过则重建结构!
        resize();
    afterNodeInsertion(evict);
    return null;
}
  下面主要关注是三个函数:
 
putTreeVal(this, tab, hash, key, value);
treeifyBin(tab, hash);
treeify();
resize();

(编辑:大同站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!